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Chaotic Motion of a Rigid Rotator 
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1. INTRODUCTION 

The dynamical system with two degrees of freedom has been studied 
by many authors in the attempt to get a complete picture of the behavior 
of the system. It is well known that if the system possesses a first integral 
besides the integral of energy, then the system is completely integrable. 
Following the fundamental works of Kolmogorov (1954), Arnold (1963), 
and Moser (1973) (KAM), many theoretical and numerical results have 
been presented by authors who have studied the problem when the system 
has only the integral of energy (Jacobi's integral). The results of KAM 
have clarified the picture of nonintegrable systems through small perturba- 
tions of integrable systems; for small perturbations we get very regular 
orbits, lying apparently on invariant tori, while for larger perturbations a 
part of the tori seems to be destroyed and erratic orbits appear instead 
filling the so-called stochastic region. 

On the other hand, the problem of a heavy rigid body rotating about 
a fixed point has not been solved except in three cases where the mass 
distributions satisfy certain relations. These cases are those of Euler, 
Lagrange, and Kovaleveskaya. Euler's (1758) case was reduced to quadra- 
ture in elliptic functions. Deprit (1967), by his variables, reduced the 
problem to only one degree of freedom. This reduction permits the 
representation of all possible solutions of the problem by isoenergetic 
curves in the phase plane. The perturbation of Euler's case in Deprit's 
variables has been treated by many authors to prove the existence of 
periodic solutions with small parameters in the gravity or the Newtonian 
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field (see, for example, (Barkin and Ievlev, 1977; Demin and Kiselev, 
1974; EI-Sabaa, 1989a)). In the Lagrange (1888) case the problem 
was integrated in terms of elliptic functions, but no one has simplified 
this problem as for Euler's case, while in the Kovalevskaya case the 
problem was integrated in terms of the Riemann 0-functions of two 
variables, which is a very complicated solution. After the solution of 
Kovaleveskaya, there have been many works concerned almost entirely 
with the consideration of special cases, starting with the work of Applerot 
(1893), and including the work of Kozlov (1980) and E1-Sabaa (1989b), 
attempting to find enough special cases to be able to know more about 
the general behavior of the problem. 

In the present work we transform the equations of motion of a heavy 
rigid body into dynamical systems of two degrees of freedom by using 
isothermal coordinates. The new system has Jacobi's integral and we 
investigate numerically the existence of the second integral. This integral 
occurs when the regular orbits lie on invariant tori in the phase space. 
Stochastic regions indicate that the system is notintegrable. 

2. THE EQUATIONS OF MOTION 

Consider a set of Cartesian coordinates OXYZ, fixed to a rigid body 
with respect to a reference system Oxyz fixed in the inertial space. The 
moving system Oxyz is chosen such that the axes are directed along 
the principal axes of inertia for point O. The orientation of the fixed 
system relative to the moving one is specified by means of the Eulerian 
angles 0, ~b, and ~b. The unit vector "/along the axes of symmetry of the 
body has the components 71, 72, and 73 connected with Eulerian angles by 
the relations 

71 = sin 0 sin ~b, ]12 = sin 0 cos ~b, Y3 = cos 0 (1) 

while the components of the angular velocity of the body to can be 
expressed in terms of Eulerian angles and of their temporal derivatives as 
follows: 

p = 6 sin 0 + 0 cos ~b 

q = q) sin 0 cos tp - 0 sin tp (2) 

r = ~  cos0+q~ 
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The Lagrangian function of the system can be written in the form 

L(O, O, (,) 

1 [A(qJ sin 0 sin ~b + 0 cos ~b) z 
2 

+ B(q~ sin 0 cos ~b + 0 sin ~b) z - C(~ cos 0 + 4;) 2] - V(O, ~b)] (3) 

where A, B, and C are the principal moments of  inertia, and V is the 
potential energy defined as 

V(O, c~) = mg(X o sin 0 sin ~b + Yo sin 0 cos ~b + Z o cos 0) (4) 

where Xo, Yo, and Zo are the components of the radius vector of  the center 
of  mass in the reference system which is fixed to the body, m is the mass of  
the body, and g is the acceleration due to gravity. 

The equations of  motion are 

(5) 

where 0 is a negligible coordinate. The system (5) is a nonlinear system of 
differential equations in the unknown functions (0, 4~, 0, 0, 4~). This system 
can be solved if there exist four time-independent integrals. There are three 
known cases where the problem can be solved--Euler,  Lagrange, and 
Kovalevskaya--wbere  the mass distribution satisfies certain relations. In 
general, the problem of a rigid body has not been solved and is in a sense 
unsolvable. 

3. THE REDUCTION OF TI tE EQUATIONS 

Aside from the three cases mentioned above, many other cases are 
known for solving the rigid-body problem either by assuming some restric- 
tions on the constants of  integration or by transforming the equations of 
motion into a more easily reduced system. According to Yahya (1976), the 
system of equations (5) can be transformed into a system of two degrees of  
freedom using isothermal coordinates as follows: 
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The Routhian function of  the system is written as 

l 
R = -~ C(A  sin 2 ~b + B cos 2 t~) sin 2 00~ 2 - ~ C(A - B)  sin 20 sin 2~0t~ 

+ [ D ( A  cos s ~b + B sin 2 $ ) - ( A -  B)2 sin2 0 sin 2 $ c o s  2 $]~2} 

+ f D  sin r cos ~b cos 0 d [C Initan t~[ - (A -- B) lnlcos O l] + v(o,  r  

-- l f 2 D  (6) 

where 

D = (A sin 2 ~ + B cos s 4) sin s ~b + C cos s 0 (7) 

If  we introduce the new variables ~, ~/, and ( related to the Eulerian angles 
by the relations 

sin 0 sin $ = x / ~ ,  sin 0 cos $ = x/~r/, cos 0 = x / ~  (8) 

then (~, r/, 0 are the coordinates of  any point on the surface of ellipsoid 
inertia 

A~ 2 + B~/2 + C( s = 1 (9) 

The Routhian function becomes 

= ~ xscn(~ ~ + 0 ~ + ~) +fD(ASC) '/~ R 
1 - -  C~ 2 

x [C~(r/~ - ~il) - (A - B)~rl(] + V - l f 2 D  (10) 

Let 

(~, ~, 0 
1 

= [(1 - n~S)(1 + rapS)] 1/2 

x [ - - ~  tx( l -k '2p2)  1/2, 

where 

k s =  1 - k  " 2 - - ~  

{ ( 1  - ~ s ) ( 1  - p 2 ) } , / ~ ,  

A - - B  A - - B  B - - C  
A - - C '  n = T '  m T  (11) 
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The  quadra t ic  terms o f  the Rou th i an  funct ion in the old velocities ~, ~j, 
and  (, 

1 "2 1~2 R2 = ~ aacz) (r  + + (2) 

are t r ans formed  into quadrat ic  terms in the new velocities a and p as 
follows 

BN ]-C 4 2 
R 2 = ~ / L ~  (1 - mt2)2(1 - k2tx2)(1 - ~t 2) 

m ~2 1 
-t C ( 1  + mp2)2(1 - k'2p2)(1 - p2) (12) 

where N = 1 -- k2~ 2 - k'2p 2. 
In t roduc ing  new variables x, y such that  

x -- ( 1 - ne2)[( 1 - k2e2)(l  - 62)] i/2 

{m~ 1/2 l "~ dp 
Y = ~C) .1o ( 1 +mp 2)[(1 - k ' 2 p  2)( 1 - p 2)1 u2 

(14) 

with dz = dt/BN, we find tha t  the Routh ian  funct ion takes the fo rm 

1 ,2 R = ~ ( x  + y , 2 )  + f ( P T x ' - Q S y ' )  + V 

where 

P = (1 - mt2)1/2(1 

Q = n(1 + mp2)l/2(1 

.4 + B -- C k20t2~ 
; A 

A +W - Cp2" ~ 
C 

S = ot[(1 - ~t2)(1 - k2ct2)( 1 - mr2)] u2 

T =  p[( l  - p2)(1 - k'2p2)(1 + mp2)] u2 

The equat ions  o f  mo t ion  in the new variables are 

~u y"-ax'  ov ( ,=d~  
x" + flY" = dx, , = -~y \ az / 

(15) 

(16) 
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The system (16) is a plane motion system of two degrees of freedom under 
the action of a potential and gyroscopic force U and f~ defined by 

U = B N [ E +  V-2f-~B ( 1 -  n~2)(1 + mp2)] (17) 

= (AC)l/-'----~ [( 1 - not2)( 1 + rap2)] 1/2 

• - - B + C - - 2 ( A  --B)o~2+2(B--C)p 2] (18) 

and possesses the Jacobi integral 

x '2 + y'~ = 2U (19) 

4. THE PERIODIC ORBITS OF THE MOTION 

The nonintegrable system (16) is quasiintegrable in the sense that there 
exist invariant tori near the stable periodic solutions, in accordance with 
KAM theory, which states that almost all the invariant tori of the 
unperturbed system remain in spite of the presence of a small perturbation. 
The system (16) was solved analytically to get the periodic solutions about 
the eqtfilibrium positions for small perturbation. The results are compatible 
with the KAM theory, since the invariant tori exist in the neighborhood of 
the stable periodic solution (Lyapunov, 1966). 

H6non and Heiles (1964) used computer calculations to show that the 
invariant tori exist for small values of the energy constant, and conse- 
quently the system is close enough to its periodic solutions; they showed 
also that for a large value of the energy constant (escape energy), stochastic 
regions appears instead of the invariant tori. 

We used the fixed-point method introduced first by Poincar6 (1975) 
and continued by Birkhoff (1927) and Moser (1973) to obtain the invariant 
curve of the system (16). The solution of (16) represents the trajectory in 
the phase space (x, x',  y, y') and along this trajectory the value of the 
Jacobi constant is fixed. Thus, for a given value of this constant, the 
trajectory of the problem will be treated in three-dimensional space 
(x, y, x'). Let us examine the consecutive crossing of this trajectory with 
the plane (x, x') in the positive direction, i.e., points of the trajectory 
which satisfy the conditions y = 0, y '  > 0 in the phase plane (x, y). These 
points correspond to the crossing of the trajectory of the point x -- x(z), 
y = y(z). 

The investigation of this trajectory is reduced to the study of the 
manifold of such found points in the phase plane (x, x). 
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For  the initial conditions x = Xo, y = O, x '  = O, and y '  obtained from 
the Jacobi integral 

y,2 = 2BN E + V - ~-~ (1 -- n~Z)(1 + mp 2) (20) 

and a fixed value for the constant E, equations (16) can be integrated 
numerically. 

The points of  intersection are always inside the curve representing the 
periodic orbits y = y '  = 0. 

If  the curve is closed, then all other orbits will lie inside this curve and 
then we have an ordered motion. If  the curve is open, then the orbits will 
be on one side of  the curve and then we have chaotic motion. 

5. T H E  ANALYSIS OF T H E  EQUATIONS OF M O T I O N  

To study the perturbation of  integrable cases of  the rigid-body prob- 
lem, it is required to seek the initial conditions of  the system (16) that 
correspond to the integrable cases of the rigid-body problem. 

For  N = 0 we have the ellipse 

or2 pZ 
- - + - - - - 1 ,  O<k,k '<- I  

2 2 

Then for N > 0 there exist 0~, p such that - 1 < 0~, p < 1. So if k = 0 and 
k ' = l ,  t h e n N = l - p 2 > 0 a n d i f k = l  a n d k ' = 0 ,  t h e n N = l - ~ 2 > 0 .  
According to Jacobi's integral (19) for Euler's case (Xo = Yo = Zo = 0), we 
have either 

o r  

and then we get 

C. 

0 < n < 1 and m < 0 

n < O  and O < m < l  

f 2 

E - ~-~ ( 1 - n~U)(1 + mp z) > 0 (21) 

In the case o f f  = 0, the constant E > 0. 
We consider the following cases for the moments of  inertia A, B, and 

1. A = B > C .  In this c a s e k = 0 ,  k ' = l , n = 0 ,  a n d m > 0 ,  there la -  
tion (21) becomes 

f 2 

E > ~-~ (1 +rap z) (22) 
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So for any value of  ~, the quantity p is restricted by the condition 

( 2 B E / f  z) -- 1 f 2  
p2 > with E > - -  (23) 

m 2B 

2. B = C > A. By the same procedure, we choose the initial values of  
p and �9 such that  

( 2 s e / f  ~) - 1 f~ 
~2 > with E > 2-B (24) 

n 

and p takes any value. 
3. A = B < C .  In this case, we have k = 0 ,  k ' = l ,  n = 0 ,  and 

0 < m < 1, and then we get 

f2 p2> (2BE/f z)m - 1 with E>~-~ (1 + m) (25) 

with any value of  e. 
4 . . 4  > B = C. This case is similar to the one when p takes any value 

and �9 is restricted by the condition 

1 -- 2 B E / f  2 f 2  
~ 2 >  n with E > ~ - ~ ( 1 - n )  (26) 

w h e r e 0 < n < l  a n d m = 0 .  
5. A > B > C ,  We have 

2BE  
(1 -- nct2)(1 + mp 2) < (27) 

f :  

where 0 < k < l, 0 < k '  < I, 0 < n < 1, and m > O, so that 0 < 1 - n 0 t  2 --< 1 
and 1 + m p  2 _> l, which leads to two cases 

and 

1 -- not 2 < 2B E  2BE  
f with - - ~ -  < 1 

( 1 -- n~ 2)(1 + mp 2) < _ _  
2 B E  2BE  

with _----:- > 1 
f 2  f ,  

Figure 1 shows the invariant curves for small perturbation of  Euler's 
case (Xo = 0, Yo = 0.2, Zo = 0.02). The invariant curves are closed. This 
means that the motion is ordered. 

The computer  calculations show that the invariant curves do not 
depend on the increase of  E, where the Poincar~ mappings lie on the 
invariant tori for large values of  E. 
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Fig. 1. 

I 

The invariant curves for small perturbation of the Euler case (Xo = 0, Yo = 0.2, 
Zoo0.02) for different value of E: 0.5, 1.01, 1.5. 

For a large perturbation, part o f  the tori is destroyed and the orbits lie 
on  one side o f  the curve, which means that chaotic mot ion  appears in this 
case. Figure 2 shows this case when the center o f  mass takes the values 
(0, l, 1.5) and (2, 2, 3), respectively. Figures 3 and 4 show the orbits in the 
xy  plane corresponding to these cases, while Fig�9 5 shows the periodic orbit 

/ 

~:o ~ .  

Chaotic motion appears instead of regular motion for large perturbations of the Euler 
C a S ~ .  
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Fig. 3. 

0 

The orbit in the xy plane for large perturbation of the Euler case where the center of 
mass is (0, 1, 1.5). 

of the small perturbation of Euler's case. The small perturbation of 
Lagrange's case can be taken as a continuation to study the regular and 
chaotic motion of a rigid-body problem. 

Figure 6 shows the several orbits which have been computed, and for 
each of them the corresponding points appear to lie on a regular closed 
curve, which means again that the motion is ordered. 

h : 8 , L ~  

Fig. 4. 

0 

The orbit in the xy plane for large perturbation of the Euler case when the center of 
mass is (2, 2, 3). 
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O 

Fig. 5. The closed orbit for small perturbation of  the Lagrange case. 

Figures 7-9 show some orbits in the xy plane corresponding to the 
regular motion. Figure 10 represents the chaotic motion for a large 
perturbation of Lagrange's case, A -  B = 5, X0 = 2, Zo = 3, for several 
values of �9 and x'. 

The case of the Kovaleveskaya problem has been studied in detail in 
E1 Sabaa (n.d.) by using Kolossoff's transformation, which transforms the 

Fig. 6. 

, 4 ,  
" g "  �9 

�9 0 .  t �9 I~  
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The regular mot ion for small perturbation of  the Lagrange case where A - B = 0.02, 
Xo = 0.01, Yo = 0.02, Z o = 1 for different values o f  ~ and x ' .  
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b:O.lgO0 

Fig. 7. The closed orbit for small perturbation of  the Lagrange case. 

problem into a plane particle motion under a certain potential function and 
then the method of surface section is used. 

6. CONCLUSIONS 

We studied regular and chaotic motion in the problem of a heavy rigid 
body with a fixed point. The results agree with the KAM theorem. Here we 

Fig, 8. 

%,../ 

h:O.tSgO 

The closed orbit for small perturbation of  the Lagrange case. 
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i 

9 

Fig. 9. The dosed orbit for small perturbation of the Lagrange case. 

used the method of surface section after transforming the equation of  
motion of  a rigid body into a system of two degrees of  freedom with 
gyroscopic force. This force represents a great difficulty in the numerical 
calculations. Moreover, there are restrictions on the initial conditions 
where A ~ C and A ~ 0 and C ~ 0. In the ordered motion with a conve- 
nient perturbation, the invariant curves remain dosed but their shape 
changes according to the change of initial conditions of ~ and x'. 

4" 

Fig. I0. The chaotic motion of the Lagrange case for large perturbation. 
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This work is confirmed by calculating the correlation function C(s) of 
some mapped points. 

If (xi, x~) are the coordinates of the i image point, i = 1, 2 , . . . ,  n, then 
the correlation function is defined as 

c(s )  = Y~7--- : (xi - ( x ' )  )(x ; + , - ( x ' )  ) 
~ 7 - :  (x~ - ( x ' ) )  2 

0.5 

- !  

% 
\ 

\ 

\ 

\ 

5 10 1~ 20 

-1  

- 2  

-3  , 1'o 1~ ~o ~ ...... ;o 

F i g .  I 1 .  Correlation functions C(s) for initial points on stochastic and regular regions. 
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where 

(x'> 

We take the Euler case as an example to see the dispersity of the 
mapped points. 

As shown in Fig. 11, C(s) decays rapidly for the mapped points in the 
stochastic region, while it oscillates for the points in the regular region. 
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